Brain MR Image Segmentation using Tabu Search and Hidden Markov Random Field Model
نویسندگان
چکیده
In this paper, we propose a hybrid Tabu Expectation Maximization (TEM) Algorithm for segmentation of Brain Magnetic Resonance (MR) images in both supervised and unsupervised framewrok. Gaussian Hidden Markov Random Field (GHMRF) is used to model the available degraded image. In supervised framework, the apriori image MRF model parameters as well as the GHMRF model parameters are assumed to be known. The class labels are estimated using the Maximum a Posteriori (MAP) estimation criterion. In unsupervised framework, the problem of model parameter estimation and label estimation is formulated in Expectation Maximization (EM) framework. The labels are estimated using the proposed Tabu Search algorithm while the model parameters are the maximum likelihood estimates. Our proposed algorithm yields results with arbitrary initial paramater set and thus overcomes the problem of proper choice of initial parameters. The results obtained are comparable with the results obtained by using the algorithm proposed by Zhang et.al. [15] , where the Iterated Conditional Mode (ICM) algorithm is used for computing the MAP estimates.
منابع مشابه
Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation
Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...
متن کاملAutomated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images
ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...
متن کاملUnsupervised Image Segmentation using Tabu Search and Hidden Markov Random Field Model
We propose a Tabu search based Expectation Maximization (EM) algorithm for image segmentation in an unsupervised frame work. Hidden Markov Random Field (HMRF) model is used to model the images. The observed image is considered to be a realization of Gaussian Hidden Markov Random Field (GHMRF) model. The segmentation problem is formulated as a pixel labeling problem. The GHMRF model parameters a...
متن کاملRegion Based Hidden Markov Random Field Model for Brain MR Image Segmentation
In this paper, we present the region based hidden Markov random field model (RBHMRF), which encodes the characteristics of different brain regions into a probabilistic framework for brain MR image segmentation. The recently proposed TV+L model is used for region extraction. By utilizing different spatial characteristics in different brain regions, the RMHMRF model performs beyond the current st...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کامل